Part Number Hot Search : 
2SD2121S LTC3404 SI104 LTC3404 2N490112 4063A AS3524 MP6TP
Product Description
Full Text Search
 

To Download HMC1126 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  gaas , phemt , mmic , power amplifier, 2 ghz to 50 ghz da ta sheet HMC1126 rev. c document feedback information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective owners. o ne technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 ? 2015 C 2017 analog devices, in c. all rights reserved. technical support www.analog.com features o utput power for 1 db compression (p1db): 17.5 db typical saturated o utp ut power (p sat ) : 21 dbm typical g ain : 11 db typical o utput third - order intercep t ( ip3 ) : 28 dbm typical s upply voltage : 5 v at 65 ma 50 ? matched input/output die size: 2.3 mm 1.45 mm 0. 05 mm applications test instrumentation microwave radios and vsats military and space telecommunications infrastructure fiber optics functional block dia gram 3 4 5 1 2 rfout v dd rfin v gg 1 v gg 2 HMC1126 13083-001 f igure 1. general description the HMC1126 is a gallium arsenide ( gaas ), pseudomorphic high electron mobility transfer ( phemt ), monolithic microwave integrated circuit ( mmic ), distributed power amplifier that operates from 2 ghz to 50 ghz. the HMC1126 provides 11 db of gain , 28 dbm output ip3, and 17.5 dbm of output power at 1 db gain compression, while requiring 6 5 ma from a 5 v supply. the HMC1126 amplifier inputs/outputs are internally matched to 50 ? facilitating integration into multichip modules (mcms) . all data is taken with the chip connected via two 0.025 mm ( 1 mil) wire bonds of minimal length 0.31 mm (12 mils).
HMC1126 data sheet rev. c | page 2 of 16 table of contents features .............................................................................................. 1 applications ....................................................................................... 1 functional block diagram .............................................................. 1 general description ......................................................................... 1 revision history ............................................................................... 2 electrical specifications ................................................................... 3 2 ghz to 10 ghz frequency range ........................................... 3 10 ghz to 26 ghz frequency range ......................................... 3 26 ghz to 40 ghz frequency range ......................................... 4 40 ghz to 50 ghz frequency range ......................................... 4 absolute maximum ratings ............................................................ 5 esd caution ...................................................................................5 pin configuration and function descriptions ..............................6 interface schematics .....................................................................7 typical performance characteristics ..............................................8 applications information .............................................................. 13 mounting and bonding techniques for millimeterwave gaas mmics ......................................................................................... 13 application circuit ......................................................................... 15 assembly diagram ..................................................................... 15 outline dime nsions ....................................................................... 16 ordering guide .......................................................................... 16 revision history 12/2017 rev. b to rev. c changes to figure 1 .......................................................................... 1 changes to figure 4 .......................................................................... 7 changes to ordering guide .......................................................... 16 2/ 2016 re v. a to rev. b change to features section ............................................................. 1 updated outline dimensions ....................................................... 16 5/ 2015 re v. 00.1114 to rev. a this hittite microwave products data sheet has been reformatted to meet the styles and standards of analog devices, inc. updated format .................................................................. universal changes to table 5 ............................................................................. 5 added applications information section and figure 35 .......... 13 added ordering guide section .................................................... 16
data sheet HMC1126 rev. c | page 3 of 16 electrical specifications 2 gh z to 10 gh z frequency range t a = 25 c, v dd = 5 v, v gg 2 = 1.4 v, i dd = 65 ma , unless otherwise stated. adjust v gg 1 between ?2 v to 0 v to achieve i dd = 65 ma typical. table 1 . parameter symbol test conditions/comments min typ max unit frequency range 2 10 gh z gain 8 11 db gain variation over temperature 0. 002 db /c return loss input 12 db output 14 db output output power for 1 db compression p1db 14. 5 17.5 db m saturated output power p sat 21 db m output third - order intercept ip3 measurement taken at p out /tone = 10 dbm 31 db m noise figure 4. 5 total supply current i dd v dd = 4 v, v dd = 5 v, v dd = 6 v, v dd = 7 v, or v dd = 8 v 65 ma 10 gh z to 26 gh z frequency range t a = 25c, v dd = 5 v, v gg 2 = 1.4 v, i dd = 65 ma, unless otherwise stated. adju st v gg 1 betw een ?2 v to 0 v to achieve i dd = 65 ma typical. table 2 . parameter symbol test conditions/comments min typ max unit frequency range 10 26 ghz gain 8 10. 5 db gain variation over temperature 0. 005 db /c return loss input 14 db output 20 db output output power for 1 db compression p1db 14. 5 17.5 db m saturated output power p sat 21 db m output third - order intercept ip3 measurement taken at p out /tone = 10 dbm 28 db m noise figure 4 total supply current i dd v dd = 4 v, v dd = 5 v, v dd = 6 v, v dd = 7 v, or v dd = 8 v 65 ma
HMC1126 data sheet rev. c | page 4 of 16 26 gh z to 40 gh z frequency range t a = 25c, v dd = 5 v, v gg 2 = 1.4 v, i dd = 65 ma, unless otherwise stated. adju st v gg 1 bet ween ?2 v to 0 v to achieve i dd = 65 ma typical. table 3 . parameter symbol test conditions/comments min typ max unit frequency range 26 40 gh z gain 8 11 db gain variation over temperature 0. 005 db /c return loss input 20 db output 218 db output output power for 1 db compression p1db 13 16 db m saturated output power p sat 2 0. 5 db m output third - order intercept ip3 measurement taken at p out /tone = 10 dbm 28 db m noise figure 4 total supply current i dd v dd = 4 v, v dd = 5 v, v dd = 6 v, v dd = 7 v, or v dd = 8 v 65 ma 40 gh z to 50 gh z frequency range t a = 25c, v dd = 5 v, v gg 2 = 1.4 v, i dd = 65 ma, unless otherwise stated. adj ust v gg 1 betwe en ?2 v to 0 v to achieve i dd = 65 ma typical. table 4 . parameter symbol test conditions/comments min typ max unit frequency range 40 50 gh z gain 8 10. 5 db gain variation over temperature 0. 009 db /c return loss input 12 db output 12 db output output power for 1 db compression p1db 10 13 db m saturated output power p sat 18 db m output third - order intercept ip3 measurement taken at p out /tone = 10 dbm 24 db m noise figure 5 total supply current i dd v dd = 4 v, v dd = 5 v, v dd = 6 v, v dd = 7 v, or v dd = 8 v 65 ma
data sheet HMC1126 rev. c | page 5 of 16 absolute maximum rat ings table 5. parameter rating drain bias voltage (v dd ) 8 .5 v gate bias voltage v gg 1 ?3 v to 0 v v gg 2 for v dd = 8 v 1 3.6 v for v dd = 7 v 3.0 v for v dd = 6 v >2.0 v for v dd = 4 v to 5 v >1.2 v rf input power (rfin) 22 dbm channel temperature 175 c continuous power dissipation , p diss (t a = 85c , derate 21.3 mw/c at 85c ) 1.915 w thermal resistance, r th ( channel to bottom of die ) 47 c/w 2 storage temperature ? 65 c to + 150 c operating temperature ?55c to +85c esd sensitivity, human body model (hbm) class 1a, p assed 250 v stresses at or above those listed under absolute maximum ratings may cause permanent damage to the product. this is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. operation beyond the maximum op erating conditions for extended periods may affect product reliability. esd caution 1 i dd < 105 ma. 2 based upon a thermal epoxy of 20 w/ c.
HMC1126 data sheet rev. c | page 6 of 16 pin configuration and function descripti ons 3 4 5 1 2 rfout v dd rfin v gg 1 v gg 2 HMC1126 top view (not to scale) 13083-002 f igure 2. pad configuration table 6 . p ad function descriptions p ad no. mnemonic description 1 rfin rf input. this pin is ac - coupled and matched to 50 ?. 2 v dd power supply voltage with integrated rf choke. connect dc bias to this pin to provide drain current (i dd ). 3 rfout rf output. this pin is ac - coupled and matched to 50 ?. 4 v gg 2 gate control 2 for amplifier. attach bypass capacitors as shown in figure 38 . for nominal operation, apply 1.4 v to v gg 2. 5 v gg 1 gate control 1 for amplifier . attach bypass capacitors as shown in figure 38 . adjust this pin to achieve i dd = 65 ma. die b ottom gnd die bottom must be connected to rf/dc ground.
data sheet HMC1126 rev. c | page 7 of 16 interface schematics rfin 13083-029 f igure 3 . rfin interface schematic v dd 13083-030 figure 4. v dd interface schematic rfout 13083-031 f igure 5 . rfout interface schematic v gg 2 13083-032 figure 6. v gg 2 interface schematic v gg 1 13083-033 f igure 7. v gg 1 interface schematic gnd 13083-034 figure 8 . gnd interface schematic
HMC1126 data sheet rev. c | page 8 of 16 typical performance characteristics ?40 ?30 ?20 ?10 0 10 20 s11 s21 s22 response (db) frequenc y (ghz) 0 5 10 15 20 25 30 35 40 45 5550 13083-003 figure 9. response (gain and return loss ) vs. frequency ?40 ?30 ?20 ?10 0 return loss (db) frequenc y (ghz) 0 5 10 15 20 25 30 35 40 45 50 ?55c +25c +85c 13083-004 figure 10 . input return loss vs. frequency at various temperature s 6 8 10 12 14 16 18 gain (db) frequenc y (ghz) 0 5 10 15 20 25 30 35 40 45 50 4v 5v 6v 7v 8v 13083-005 figure 11 . gain vs. frequency at various supply voltages (v dd ) (for v dd = 4 v, v gg 2 = 1.4 v; for v dd = 5 v, v gg 2 = 1.4 v; for v dd = 6 v, v gg 2 = 2 v; for v dd = 7 v, v gg 2 = 3 v; for v dd =8 v, v gg 2 = 3.6 v) 4 6 8 10 12 14 16 gain (db) frequenc y (ghz) 0 5 10 15 20 25 30 35 40 45 50 ?55c +25c +85c 13083-006 figure 12 . gain vs. frequency at various temperatures ?40 ?30 ?20 ?10 0 return loss (db) frequenc y (ghz) 0 5 10 15 20 25 30 35 40 45 50 ?55c +25c +85c 13083-007 figure 13 . output return loss vs. frequency at various temperatures 6 8 10 12 14 16 18 65m a 80m a 95m a 105m a gain (db) frequenc y (ghz) 0 5 10 15 20 25 30 35 40 45 50 13083-008 figure 14 . gain vs. frequency at various supply current s (i dd ) (for v dd = 5 v, v gg 2 = 1.4 v)
data sheet HMC1126 rev. c | page 9 of 16 5 7 9 11 13 15 17 19 21 23 25 2 6 10 14 18 22 26 30 34 38 42 46 50 p1db (dbm) frequenc y (ghz) ?55c +25c +85c 13083-009 figure 15 . p1db vs. frequency at various temperatures p sat (dbm) 5 7 9 11 13 15 17 19 21 23 25 2 6 10 14 18 22 26 30 34 38 42 46 50 frequenc y (ghz) ?55c +25c +85c 13083-010 figure 16 . p sat vs. frequency at various temperatures 65m a 80m a 95m a 105m a 5 7 9 11 13 15 17 19 21 23 25 p1db (dbm) 2 6 10 14 18 22 26 30 34 38 42 46 50 frequenc y (ghz) 13083-0 11 figure 17 . p1db vs. frequency at various supply currents (for v dd = 5 v, v gg 2 = 1.4 v) 5 7 9 11 13 15 17 19 21 23 25 4v 5v 6v 7v 8v p1db (dbm) frequenc y (ghz) 2 6 10 14 18 22 26 30 34 38 42 46 50 13083-012 figure 18 . p1db vs. frequency at various supply voltages (for v dd = 4 v , v gg 2 = 1.4 v; for v dd = 5 v, v gg 2 = 1.4 v; for v dd = 6 v, v gg 2 = 2 v; for v dd = 7 v, v gg 2 = 3 v; for v dd =8 v, v gg 2 = 3.6 v) 5 7 9 11 13 15 17 19 21 23 25 p sat (dbm) frequenc y (ghz) 2 6 10 14 18 22 26 30 34 38 42 46 50 4v 5v 6v 7v 8v 13083-013 figure 19 . p sat vs. frequency at various supply voltages (for v dd = 4 v, v gg 2 = 1.4 v; for v dd = 5 v, v gg 2 = 1.4 v; for v dd = 6 v, v gg 2 = 2 v; for v dd = 7 v, v gg 2 = 3 v; for v dd =8 v, v gg 2 = 3.6 v) frequenc y (ghz) 5 7 9 11 13 15 17 19 21 23 25 p sat (dbm) 2 6 10 14 18 22 26 30 34 38 42 46 50 65m a 80m a 95m a 105m a 13083-014 figure 20 . p sat vs. frequency at various supply currents (for v dd = 5 v, v gg 2 = 1.4 v)
HMC1126 data sheet rev. c | page 10 of 16 15 17 19 21 23 25 27 29 31 33 35 frequenc y (ghz) ip3 (dbm) 2 6 10 14 18 22 26 30 34 38 42 46 50 ?55c +25c +85c 13083-015 figure 21 . output ip3 vs. frequency for various temperature s, p out = 0 dbm /tone 15 17 19 21 23 25 27 29 31 33 35 65m a 80m a 95m a 105m a ip3 (dbm) frequenc y (ghz) 2 6 10 14 18 22 26 30 34 38 42 46 50 13083-016 figure 22 . output ip3 vs. frequency for various supply currents, p out = 0 dbm/tone (for v dd = 5 v, v gg 2 = 1.4 v) 0 10 20 30 40 50 60 80 70 ?5 ?2 1 4 7 10 p out /t one (dbm) im3 (dbc) 2ghz 10ghz 20ghz 30ghz 40ghz 50ghz 13083-017 figure 23 . output third - order intermod ulation ( im3) vs. p out /tone at v dd = 5 v, v gg 2 = 1.4 v 15 17 19 21 23 25 27 29 31 33 35 frequenc y (ghz) ip3 (dbm) 2 6 10 14 18 22 26 30 34 38 42 46 50 4v 5v 6v 7v 8v 13083-018 figure 24 . output i p 3 vs. frequency for various supply voltages, p out = 0 dbm/tone (for v dd = 4 v, v gg 2 = 1.4 v; for v dd = 5 v, v gg 2 = 1.4 v; for v dd = 6 v, v gg 2 = 2 v; for v dd = 7 v, v gg 2 = 3 v; for v dd =8 v, v gg 2 = 3.6 v) 0 10 20 30 40 50 60 70 80 im3 (dbc) p out /t one (dbm) ?5 ?2 1 4 7 10 2ghz 10ghz 20ghz 30ghz 40ghz 50ghz 13083-019 figure 25 . output im3 vs. p out /tone at v dd = 4 v , v gg 2 = 1.4 v ?5 ?2 1 4 7 10 0 10 20 30 40 50 60 70 80 im3 (dbc) p out /t one (dbm) 2ghz 10ghz 20ghz 30ghz 40ghz 50ghz 13083-020 figure 26 . output im3 vs. p out /tone at v dd = 6 v , v gg 2 = 2 v
data sheet HMC1126 rev. c | page 11 of 16 ?5 ?2 1 4 7 10 0 10 20 30 40 50 60 70 80 im3 (dbc) p out /t one (dbm) 2ghz 10ghz 20ghz 30ghz 40ghz 50ghz 13083-021 fi gure 27. output im3 vs. p out /tone at v dd = 7 v , v gg 2 = 3 v 0 1 2 3 4 5 6 7 8 1 8 15 22 29 36 43 50 noise figure (db) frequenc y (ghz) ?55c +25c +85c 13083-022 figure 28 . noise figure vs. frequency at various temperatures 1 8 15 22 29 36 43 50 0 1 2 3 4 5 6 7 8 noise figure (db) frequenc y (ghz) 65m a 80m a 90m a 105m a 13083-023 figure 29 . noise figure vs. frequency at various supply currents (for v dd = 5 v, v gg 2 = 1.4 v) 0 10 20 30 40 50 60 70 80 im3 (dbc) 2ghz 10ghz 20ghz 30ghz 40ghz 50ghz ?5 ?2 1 4 7 10 p out /t one (dbm) 13083-024 fi gure 30. output im3 vs. p out /tone at v dd = 8 v , v gg 2 = 3.6 v 1 8 15 22 29 36 43 50 0 1 2 3 4 5 6 7 8 4v 5v 6v 7v 8v noise figure (db) frequenc y (ghz) 13083-025 figure 31 . noise figure vs. frequency at various supply voltages (for v dd = 4 v, v gg 2 = 1.4 v; for v dd = 5 v, v gg 2 = 1.4 v; for v dd = 6 v, v gg 2 = 2 v; f or v dd = 7 v, v gg 2 = 3 v; for v dd =8 v, v gg 2 = 3.6 v) ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 frequenc y (ghz) isol a tion (db) 0 5 10 15 20 25 30 35 40 45 50 ?55c +25c +85c 13083-026 figure 32 . reverse isolation vs. frequency for various temperatures (for v dd = 5 v, v gg 2 = 1.4 v)
HMC1126 data sheet rev. c | page 12 of 16 0 5 10 15 20 25 60 70 80 90 100 1 10 ?10 ?5 0 5 10 15 p out gain p ae i dd p out (dbm), gain (db), p ae (%) i dd (ma) input power (dbm) 13083-027 figure 33 . power compression at 24 ghz 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 ?6 ?4 ?2 0 2 4 6 8 12 14 10 2ghz 10ghz 20ghz 30ghz 40ghz 50ghz power dissi pa tion (w) input power (dbm) 13083-028 figure 34 . power di ssipation at 85c vs. input power at various frequencies
data sheet HMC1126 rev. c | page 13 of 16 applications information the HMC1126 is a gaas, phemt, mmic, cascode distributed power amplifier. the cascode distributed amplifier uses a fundamental cell of two fets in series, source to drain. this fundamental cell then duplicates a number of times. the major benefit of this is an increase in the operation bandwidth. the basic schematic for a fundamental cell is given in figure 35. 13083-039 v dd v gg 1 v gg 2 rfout rfin figure 35. fund amental cell schematic the recommended bias sequence during power up is the following: 1. connect gnd. 2. set v gg 1 to ?2 v. 3. set v dd to 5 v. 4. set v gg 2 to 1.4 v. 5. increase v gg 1 to achieve a typical quiescent current (i dq ) = 65 ma. 6. ap ply the rf signal. the recommended bias sequence during power down is the following: 1. tur n of f t he rf sig na l. 2. decrease v gg 1 to ?2 v to achieve i dq = 0 ma. 3. decr ease v gg 2 to 0 v. 4. decrease v dd to 0 v. 5. increase v gg 1 to 0 v. mounting and bonding techniques for millimeterwave gaas mmics attach the die directly to the ground plane eutectically or with conductive epoxy (see the handling precautions section, the mounting section, and the wire bonding section). microstrip, 50 , transmission lines on 0.127 mm (5 mil) thick alumina, thin film substrates are recommended for bringing the radio frequency to and from the chip (see figure 36). when using 0.254 mm (10 mil) thick alumina, thin film substrates, raise the die 0.150 mm (6 mils) to ensure that the surface of the die is coplanar with the surface of the substrate. one way to accomplish this is to attach the 0.102 mm (4 mil) thick die to a 0.150 mm (6 mil) thick, molybdenum (mo) heat spreader (moly tab) which can then be attached to the ground plane (see figure 36 and figure 37). rf ground plane 0.102mm (0.004") thick gaas mmic wire bond 0.127mm (0.005") thick alumina thin film substrate 0.076mm (0.003") 13083-037 fi gure 36. die without the moly tab 0.102mm (0.004") thick gaas mmic wire bond rf ground plane 0.254mm (0.010") thick alumina thin film substrate 0.076mm (0.003") 0.150mm (0.005") thick moly tab 13083-038 fi gure 37. die with the moly tab place microstrip substrates as close to the die as possible to minimize bond wire length. typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil). handling precautions to avoid permanent damage, follow these storage, cleanliness, static sensitivity, transient, and general handling precautions: ? place all bare die in either waffle or gel-based es d p rotective containers and then seal the die in an es d p rotective bag for shipment. once the sealed esd protective bag is opened, store all die in a dry nitrogen environment. ? handle the chips in a clean environment. do not attempt to clean the chip using liquid cleaning systems. ? follow esd precautions to protect against esd strikes. ? while bias is applied, suppress instrument and bias supply transients. use shielded signal and bias cables to minimi ze ind uctive pick up . ? h andle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. the surface of the chip may have fragile air bridges and must not be touched with vacuum collet, tweezers, or fing ers.
HMC1126 data sheet rev. c | page 14 of 16 mounting the chip is back metallized and can be die mounted with ausn eutectic preforms or with electrically conductive epoxy. ensure that the mounting surface is clean and flat. when eutectic die attached, a n 80/20 gold tin preform is recommended with a work surface temperature of 255c and a tool temperature of 265c. when hot 90/10 nitrogen/hydrogen gas is applied, ensure that tool tip temperature is 290c. do not expose t he chip to a temperature greater than 320c for more than 20 seconds. for attachment, no more than 3 seconds of scrubbing is required. when epoxy die attached, apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. cure epoxy per the schedule of the manufacturer. wire bonding rf bonds made with two 1 mil wires are recommended. ensure that these bonds are thermosonically bonded with a force of 40 grams to 60 grams. dc bonds of an 0.001 (0.025 mm) diameter, thermosonically bonded, are recommended. make ba ll bonds with a force of 40 grams to 50 grams and wedge bonds with a force of 18 grams to 22 grams. make all bonds with a nominal stage temperature of 1 50c. apply a minimum amount of ultrasonic energy to achieve reliable bonds. make all bonds as short as possible, less than 12 mils (0.31 mm).
data sheet HMC1126 rev. c | page 15 of 16 application circuit 0.1f v dd rfin rfout v gg 2 100pf 0.1f 100pf v gg 1 0.1f 100pf 2 3 4 5 1 13083-036 figure 38. application circuit assembly diagram 0.1f 0.1f 0.1f to v gg 2 supply 100pf 100pf 3mil nominal gap 100pf to v dd supply all bond wires are 1mil diameter 5 0 ? transmission line to v gg 1 supply 13083-035 figure 39. assembly diagram
HMC1126 data sheet rev. c | page 16 of 16 outline dimensions 1.449 0.605 0.501 0.095 0.150 0.150 0.150 0.095 0.208 0.150 2.299 1.539 0.629 01-21-2016-b 1 3 5 0.05 0.100 0.100 side view top view (circuit side) 4 2 0.200 0.200 0.150 0.200 0.200 figure 40 . 5- pad bare die [chip] (c-5-4) dimensions shown in millimeters ordering guide model 1 , 2 temperature range package description package option hmc 1126 ? 55 c to +85c 5- pad bare die [chip] c-5-4 HMC1126 -sx ? 55 c to +85c 5- pad bare die [chip] c-5-4 1 the hmc 1126 is rohs compliant. 2 the HMC1126 - sx is a sample order of two devices. ? 2015 C 2017 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d13083 -0- 12/17(c)


▲Up To Search▲   

 
Price & Availability of HMC1126

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X